شرح اللوغاريتمات مع تمارين محلولة هامة بحث عن الدالة اللوغاريتميه
رياضيات الدالة اللوغاريتميه
مرحباً بكم طلاب هذا العام الدراسي الجديد 2023 2024 يسرنا بزيارتكم في موقعنا باك نت أن نقدم لكم شرح ملخص وحل تطبيقات المنهج الجديد كما نقدم لكم الأن أعزائي طلاب وطالبات العلم ما يأتي.. شرح اللوغاريتمات مع تمارين محلولة هامة بحث عن الدالة اللوغاريتميه
الإجابة هي
الدالة اللوغاريتميه
إذا كان أ ينتمي إلي ح+ – {1} فإن س = لـــــوأ ص يؤدي الي ص = (أ) س
• لـــــوأ ص تقرأ لوغاريتم ص لأساس أ
• الدالة اللوغاريتميه هى الدالة العكسية للدالة الآسية
• س ينتمي إلي ح
• ص ينتمي إلي ح+
مثال (1)
إذا كانت س = لــــــــــــو5 125 اوجد قيمة س ؟
الحل
5 س = 125
5 س = 53
س = 3
مثال (2)
اوجد قيمة س إذا كان
1) لــــــــو2 س = ــ 4
2 ) لـــــــــو س 8 = 6
3) لـــــــــو س 7س = 2
4 ) لــــــــو9 81 3 = س
الحل
1) س = (2)^-4 = 1/16
2) لــــــــو س 8 = 6
س6 = 8 = (2) 3 = ( جذر 2 )6 س = جذر 2
3 ) لـــــــــوس 7س = 2
س 2 = 7 س
س2 – 7س = 0
س ( س – 7 ) = 0
س = 0 & س = 7
4) لــــــــــو9 81 جذر 3 = س يؤدي 9س = 81 جذر 3
(3)4 × جذر 3 = 9 ^س
( جذر 3 ) 9 = ( جذر3 )4س
4 س = 9
س =9/4
CC0000
صَبْراً جَمِيلاً ما أقربَ الفَرَجَا من رَاقَبَ اللَّهَ فِي الأمورِ نَجَا
منْ صدق الله لم ينلهُ أذى ومن رجَاهُ يكونُ حيثُ رَجَا
مثال (3)
اوجد قيمة كل من
1) لــــــــــــو 2 64
2) لـــــــــــو3 243
3) لـــــــــو 5 125
4) لـــــــــــــــو7 7
الحل
1) نفرض أن س = لـــــــــــو2 64
2س = 64 = 2 6 000000000000س = 6
لـــــــــــو2 64 = 6
2) نفرض أن س = لـــــــــــو3 243
3س = 243 = 3 5 00000000000س = 5
لـــــــــــو3 243 = 5
3) نفرض أن س = لـــــــــــو5 125
5س = 125 = 5 3 00000000000س = 3
لـــــــــــو5 125 = 3
4) نفرض أن س = لـــــــــــو7 7
7س = 7 = 7 1 0000000000000س = 1
لـــــــــــو7 7 = 1
قوانين اللوغاريتمات
• لــــــــــــو م س + لــــــــــو م ص = لـــــــــــــو م س × ص
• لــــــــــــو م س – لـــــــــــو م ص = لـــــــــــــو م س/ص
• لــــــــــــو م س ن = ن لــــــــــــو م س
• لــــــــــــو س س = 1
• لــــــــــــو م 1 = صفر
مثال (1)
بدون استخدام الآلة اثبت أن 2 لــــــــو 2 14 – 4 لــــــو 2 5 + 2 لــــــو 2 25/7= 2
الحل
الأيمن = 2 لــــــــو 2 14 – 4 لــــــو 2 5 + 2 لــــــو 2 25/7
= لــــــــو 2( 14)^ 2 – لـــــــو 2( 5)^ 4 + لــــــــو2 (25/7)^2
= لــــــــو 2 196 – لـــــــو 2 625 + لــــــــو 2 25/7
= لـــــــــو 2 (196×625) /( 625 × 49 ) = لــــــــو2 4 = لــــــو2 (2)2 = 2 لـــــو2 2 = 2
مثال (2)
بدون استخدام الآلة اثبت أن :
2 لـــــو3 15 + لـــــو3 7/3 – لــــو3 5 – لــــو3 35 = 2 لــــــــو5 جذر 5
الحل
الأيمن = 2 لــــــــو3 15 + لــــــو3 7/3 – لــــــو3 5 – لــــــــو3 35
= لــــــــو3( 15)^2+ لــــــــو3 7/3 – لـــــــو3 5 – لـــــــو3 35
= لــــــــو3 225 + لــــــــو3 7/3 – لـــــــو3 5 – لـــــــــو3 35
= لـــــــــو3(225×7)/( 5× 3×35) = لــــــــو3 3 = 1
الأيسر = 2 لـــــــــو5 جذر 5 = لـــــــــــو5 ( جذر 5 )^ 2 = لـــــــو5 5 = 1 = الأيمن
مثال (3)
إذا كان : 3 لـــــــو س + 4 لــو ص – لــــــو س ص^ 2 = 2 ( لـــــو 2 + لـــــو 3 )
اثبت أن : س ص = 6
الحل
3 لـــــــو س + 4 لــو ص – لــــــو س ص^ 2 = 2 لـــــو 2 + 2 لـــــو 3
لـــــــو س^3 + لــو ص^4 – لــــــو س ص^ 2 = لـــــو( 2)^2 + لـــــو( 3 )^2
لــــــــو (س^3 × ص^4 ) / س ص^ 2 = لــــــــو 4 + لــــــــــو 9 = لــــــــو 4 × 9
لــــــــــــــــــــــو س2 ص2 = لــــــــــو 36
س2 ص2 = 36 بأخذ الجذر التربيعي للطرفين
س ص = 6
فضل الذكر
قال صلي الله عليه وسلم " ألا أنبأكم بخير أعمالكم ، وأزكاها عند مليككم ، وأرفعها فى درجاتكم ، وخير لكم من إنفاق الذهب والورق وخير لكم من أن تلقوا عدوكم فتضربوا أعناقهم ويضربوا أعناقكم ؟ قالوا : بلى . قال ذكر الله "
الترمذي ، بن ماجه .
قال صلي الله عليه وسلم "مثل الذى يذكر ربه والذى لا يذكر ربه مثل الحى والميت "
البخارى
تذكر أن
لـــــوأ ص 000000000000 ص = (أ)^ س
مثال (4)
اوجد مجموعة حل المعادلة : لــــــــــو س ( س + 6 ) = 2
الحل
لــــــــــو س ( س + 6 ) = 2 0000000000 س + 6 = س^2
س2 – س – 6 = 0
( س – 3 ) ( س + 2 ) = 0
س = 3 & س = – 2 مرفوض
مجموعة حل المعادلة = { 3 }
مثال (5)
اوجد مجموعة حل المعادلة : لــــــــــو ( س2 + 9 س ) = 1
الحل
لــــــــــو ( س2 + 9 ) = 1 س2 + 9 س = (10)^1
س2 + 9س – 10 = 0
( س – 1 ) ( س + 10 ) = 0
س = 1 تحقق المعادلة س = – 10 تحقق المعادلة
مجموعة حل المعادلة = { 1 ، – 10}
مثال (6)
يتبع في الأسفل